	Question		n	Answer		Guidance	
1	l (a)		$(K_{c} =) \frac{[C_{2}H_{2}][H_{2}]^{3}}{[CH_{4}]^{2}} \checkmark$	1	Square brackets are essential State symbols not required. IGNORE incorrect state symbols	
	(b)	(i)	amount of $H_2 = 3 \times 0.168$ = 0.504 (mol) \checkmark	1		

(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.153 \text{ mol}^2 \text{ dm}^{-6}$, award 3 marks IF answer = 0.153 with incorrect units, award 2 marks 		FULL ANNOTATIONS MUST BE USED		
				IF there is an alternative answer, check to see if there is any ECE credit possible using working below		
		$[CH] = 2.34 \times 10^{-2} \pmod{4m^{-3}}$		ALLOW ÷ by 4 of equilibrium amounts in all expressions, i.e.		
		$[CII_4] = 2.54 \times 10^{-1}$ (morall)		ALLOW [CH ₄] = $\frac{9.36 \times 10}{4}$ mol dm ⁻³		
		AND $[C_2H_2] = 4.20 \times 10^{-2} \text{ (mol dm}^{-3}\text{)}$		AND $[C_2H_2] = \frac{0.168}{4} \mod dm^{-3}$		
		AND [H ₂] = 0.126 (mol dm ⁻³) ✓		AND [H ₂] = $\frac{0.504}{4}$ mol dm ⁻³ \checkmark		
		Coloulation of K and units	ALLOW ECF from incorrect concentrations or from moles From moles: 9.36×10^{-2} , 0.168 and 0.504, K_c = 2.45 by ECF			
		$\mathcal{K}_{c} = \frac{4.20 \times 10^{-2} \times (0.126)^{3}}{(2.34 \times 10^{-2})^{2}} = 0.153 \checkmark \text{mol}^{2} \text{ dm}^{-6} \checkmark$	3	ALLOW dm ⁻⁶ mol ² DO NOT ALLOW mol ² /dm ⁶		
		3 significant figures are required		ALLOW ECF from incorrect K_c expression for both calculation and units		
				COMMON ECF From 3(b)(i) answer of 0.1404, $K_c = 3.32 \times 10^{-3}$ 2 marks + units $K_c = 0.0531$ No ÷ 4 throughout 1 mark + units		
(b)	(iii)	Initial amount of CH ₄ amount of CH ₄ = $9.36 \times 10^{-2} + 2 \times 0.168$ = 0.4296 OR 0.43(0) (mol) \checkmark	1	NO ECF possible (all data given in question)		

(c) Equilibrium amount of C ₂ H ₂ / mol Initial rate temperature increased greater greater greater smaller container same smaller greater catalyst added same greater greater catalyst added same greater greater (d) ONE mark only USE ONE TICK ONLY × from TWO uses: 1. fuel cells 1. fuel cells increases IGNORE just 'fuel' 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats/unsaturated oils/unsaturated molecules 1 IGNORE just 'fuel' 3. making of ammonia OR Haber process 1 DO NOT ALLOW explosives OR fertilisers 1 U Image of methanol 1 Image of methanol 10							
Change K. Equilibrium amount of C ₂ H ₂ /l mol mol mol mol mol mol mol mol mol mo	(C)		1	1	,		
temperature increased greater greater greater smaller container same smaller greater container same smaller greater catalyst added same greater added same catalyst added same greater 3 added Image: Container Image: Container same greater 3 (d) ONE mark only USE ONE TICK ONLY / from TWO uses: Image: Container same greater 3 1 fuel cells		Change	Kc	Equilibrium amount of C ₂ H ₂ / mol	Initial rate		Mark by COLUMN
smaller container same smaller greater catalyst added same same greater added image:		temperature increased	greater	greater	greater		
catalyst added same greater increases/decreases; more/less (d) ONE mark only USE ONE TICK ONLY ✓ from TWO uses: ✓ ✓ 1. fuel cells I. fuel cells I. fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats/unsaturated oils/unsaturated molecules IGNORE just 'fuel' IGNORE hydrogenation of margarine ALLOW hydrogenation of fats/oils 3. making of HCl/hydrochloric acid 5. making of methanol		smaller container	same	smaller	greater		ALLOW obvious alternatives for greater/smaller/same, e.g.
(d) ONE mark only USE ONE TICK ONLY ✓ from TWO uses: I 1. fuel cells 1. fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats/unsaturated oils/unsaturated molecules IGNORE just 'fuel' IGNORE hydrogenation of margarine ALLOW hydrogenation of fats/oils 3. making of ammonia OR Haber process 1 4. making of HCl/hydrochloric acid 1 5. making of methanol 10		catalyst added	same	same	greater		increases/decreases; more/less
(d) ONE mark only USE ONE TICK ONLY ✓ from TWO uses: IGNORE just 'fuel' 1. fuel cells 1. fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats/unsaturated oils/unsaturated molecules IGNORE just 'fuel' 3. making of ammonia OR Haber process 1 4. making of HCl/hydrochloric acid 1 5. making of methanol 10			\checkmark	~	\checkmark	3	
Total 10	(d)	 ONE mark only USE ONE TICK ONLY ✓ from TWO uses: 1. fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats/unsaturated oils/unsaturated molecules 3. making of ammonia OR Haber process 4. making of HCl/hydrochloric acid 5. making of methanol 					IGNORE just 'fuel' IGNORE hydrogenation of margarine ALLOW hydrogenation of fats/oils DO NOT ALLOW explosives OR fertilisers
					Tot	al 10	

Q	uesti	on	er	Marks	Guidance
Q 2	(a)	on	er FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 16.8 with 'no units', award 5 marks At equilibrium, $n(I_2)$ OR $[I_2(g)]$ = 4.00 x 10 ⁻³ - 1.70 x 10 ⁻³ = 2.30 x 10 ⁻³ (mol / mol dm ⁻³) \checkmark n(HI) OR $[HI(g)]= 2 x 1.70 x 10-3 = 3.40 x 10-3 (mol / mol dm-3) \checkmark(K_c =) \frac{(3.40 \times 10^{-3})^2}{3.00 \times 10^{-4} \times 2.30 \times 10^{-3}} \checkmark IGNORE K_c = \frac{[HI]^2}{[H_2][I_2]}$	Marks 5	Guidance IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout For all parts, ALLOW numerical answers from 3 significant figures up to the calculator value ALLOW omission of trailing zeroes, i.e. 3.40 as 3.4 but final numerical answer for <i>K</i> _c must be to 3 SF ALLOW ECF using incorrect values for [I ₂] AND [HI] BUT [H ₂] in <i>K</i> _c expression must be 3.00 x 10 ⁻⁴ (given in Q) ALLOW ECF from incorrect <i>K</i> expression for calculation to
			= 16.8 (3 SF required) ✓ no units ✓		3 SF and units For 'no units' ALLOW 'none' (ORA) OR ' ' DO NOT ALLOW space to be left blank Common errors: Use of 1.70 x 10 ⁻³ for $n(HI)$ (no factor of x 2) $K_c = 4.19$ (3SF) and no units: 4 marks Use of K_c expression used is upside down $K_c = 0.0597$ (3SF) and no units: 4 marks No square for [HI] ² $K_c = 4930$ and dm ³ mol ⁻¹ 4 marks Note: different ECF units

Question				er		Marks	Guidance
(b) (i)	greater smaller the same Each columr Correct ticks <i>i.e. all three</i>	$H_2(g)$ \checkmark \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$I_2(g)$ \checkmark have only AND $I_2(g)$ correct	er I(g) ✓ one bo> g) AND ⊢	ticked II(g) two marks √√	2	DO NOT ALLOW more than one box ticked in a column (response is a CON)
(ii)	<i>I</i> icks for two of H ₂ (g), I ₂ (g) and HI(g) correct one mark \checkmark <i>i.e. two columns correct</i> <i>K</i> _c is smaller AND (forward) reaction is exothermic OR $\triangle H$ is negative \checkmark				His negative ✓	1	Link to ∆ <i>H</i> /exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
(iii)	K_c is the same AND K_c is temperative for the same set K_c is the same set K_c	ne ature depo	endent C	P R K _c is r	not changed by	1	ALLOW K_c is only changed by temperature IGNORE same number of moles on both side
					Total	9	

Question		on	Answer	Marks	Guidance
3	(a)	(i)	$(K_{c} =) \frac{[CO_{2}]^{2} [N_{2}]}{[CO]^{2} [NO]^{2}} \checkmark$	1	Square brackets required for ALL four concentrations
		(ii)	dm ³ mol ^{−1} ✓	1	ALLOW mol ⁻¹ dm ³

Question	Answer	Marks	Guidance
(a) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.95 award 4 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, apply ECF by checking working for intermediate marks
	$n(CO) = 0.46 - 0.20 = 0.26 \text{ mol } \checkmark$ $n(CO_2) = 0.2(0) \text{ mol } \checkmark$		APPLY ECF from incorrect starting $n(CO)$ By ECF , $n(N_2) = n(CO_2)/2$
	$n(N_2) = 0.1(0) \text{ mol } \checkmark$ <i>K</i> _c calculation		For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
	Must use calculated equilibrium amounts AND 0.25 $(K_c =) \frac{0.20^2 \times 0.10}{0.26^2 \times 0.25^2} = 0.95 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$	4	Correct numerical answer with no working scores 4 marks ALLOW calculator value: 0.946745562 down to 0.95 (2SF), correctly rounded, e.g. 0.947 IGNORE units, even if incorrect
			Common errors 1.89 3 marks use of $n(N_2) = 0.2(0) \text{ mol}$ $\frac{(K_c =)}{0.20^2 \times 0.20^2} = 1.893491124 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$ 1.29 3 marks 0.45 and 0.46 swapped over $n(CO) = 0.45 - 0.21 = 0.24 \text{ mol} \checkmark$ $n(N_2) = 0.105 \text{ mol} \checkmark$ $n(N_2) = 0.105 \text{ mol} \checkmark$ $\frac{(K_c =)}{0.24^2 \times 0.25^2} = 1.28625 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$ 1.0243 marks 0.45 used twice $n(CO) = 0.45 - 0.20 = 0.25 \text{ mol} \checkmark$ $n(N_2) = 0.1(0) \text{ mol} \checkmark$ $n(N_2) = 0.1(0) \text{ mol} \checkmark$ $n(N_2) = 0.1(0) \text{ mol} \checkmark$ $\frac{(K_c =)}{0.25^2 \times 0.25^2} = 1.024 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$ 1.1853 marks 0.46 used twice $n(CO) = 0.46 - 0.21 = 0.25 \text{ mol} \checkmark$ $n(N_2) = 0.105 \text{ mol} \checkmark$

C	Question		Answer	Marks	Guidance
	(a)	(iv)	Mark ECF from (iii) IF K_c from (iii) < 1 equilibrium to left/towards reactants OR IF K_c from (iii) > 1 equilibrium to right/towards products \checkmark	1	First look at K_c value for (iii) at bottom of cut ALLOW favours reverse reaction For correct K_c value in (iii) of 0.95, ALSO ALLOW equilibrium position near to centre \checkmark
	(b)	(i)	K_c has decreased AND ΔH is negative OR (forward) reaction is exothermic ✓	1	Statement AND reason required for mark ALLOW for reason: reverse reaction is endothermic
		(ii)	 Effect of <i>T</i> and <i>P</i> on equilibrium (increased) temperature shifts equilibrium to left AND (increased) pressure shifts equilibrium to right AND fewer (gaseous) moles on right-hand side ✓ Overall effect on equilibrium Difficult to predict relative contributions of two opposing factors ✓ 	2	 Reason ONLY required for pressure Temperature and ∆<i>H</i> had been <i>required in (i)</i> ALLOW ratio of (gas) moles is 4:3 ALLOW opposing effects may not be the same size ALLOW effects could cancel each other out ALLOW effects oppose one another DO NOT ALLOW just 'it is difficult to predict equilibrium position' (<i>in question</i>) For the 2nd mark, we are assessing the idea that we don't know which factor is dominant
			Total	10	

C	Question		Answer	Marks	Guidance
4	(a)		$MnO_2 + 4OH^- \longrightarrow MnO_4^{2-} + 2H_2O + 2e^-\checkmark$		ALLOW 'e': i.e. – sign not required
			$3H_2O + CIO_3^- + 6e^-\checkmark \longrightarrow 6OH^- + CI^-$	2	
	(b)				ANNOTATIONS MUST BE USED
			Role of CO₂ CO₂ reacts with H₂O forming an acid OR carbonic acid/H₂CO₃ forms OR CO₂ is acidic ✓		ALLOW equation: $CO_2 + H_2O \longrightarrow H_2CO_3$ $OR CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$ $OR CO_2 + H_2O \longrightarrow 2H^+ + CO_3^{2-}$
			Equation involving OH ⁻ $H_2CO_3 + OH^- \longrightarrow H_2O + HCO_3^-$ OR $H_2CO_3 + 2OH^- \longrightarrow 2H_2O + CO_3^{2-}$ OR $CO_2 + OH^- \longrightarrow CO_3^{2-} + H^+$ OR $CO_2 + OH^- \longrightarrow HCO_3^-$ OR $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$ OR $H^+ + OH^- \longrightarrow H_2O \checkmark$		
			Effect on equilibrium with reason equilibrium shifts to right AND to restore OH ⁻ ✓	3	ALLOW for 'restores OH [–] ' the following: 'makes more OH [–] ', 'OH [–] has been used up' DO NOT ALLOW just 'equilibrium shifts to right'

Question	Answer	Marks	Guidance
(c)	FOLLOW through stages to mark Moles in titration $n(KMnO_4) = 0.0200 \times \frac{26.2}{1000} = 5.24 \times 10^{-4} \text{ mol } \checkmark$		ANNOTATIONS MUST BE USED AT LEAST 3 SF for each step
	$n(SO_3^{2^-}) = 1.31 \times 10^{-3} \text{ mol } \checkmark$ Scaling $n(SO_3^{2^-}) \text{ in original } 100 \text{ cm}^3$ $= 4 \times 1.31 \times 10^{-3} = 5.24 \times 10^{-3} \text{ mol } \checkmark$		ECF 2.5 x answer above ECF 4 x answer above
	Mass Mass of Na ₂ SO ₃ in sample = 126.1 x 5.24 x 10 ⁻³ g = 0.660764 g ✓ Percentage		ECF 126.1 x answer above ALLOW 0.661 g up to calculator value
	% Na ₂ SO ₃ = $\frac{0.660764}{0.720} \times 100 = 91.8\%$ \checkmark	5	ECF <u>0.720</u> ×100 ALLOW 91.8% (1 DP) up to calculator value of 91.77277778 i.e. DO NOT ALLOW 92%
	ALLOW alternative approach based on theoretical content of Na ₂ SO ₃ for last 2 marks Theoretical amount, in moles, of Na ₂ SO ₃ in sample $n(Na_2SO_3) = \frac{0.720}{126.1} = 5.71 \times 10^{-3} \text{ mol }\checkmark$ Percentage % Na ₂ SO ₃ = $\frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100 = 91.8\% \checkmark$		COMMON ERRORS : 36.8(1)% 4 marks no 2.5 factor 22.9(4)% 4 marks no scaling by 4 9.18% 3 marks no 2.5 and no x 4 Watch for random ECF %s for % from incorrect $M(Na_2SO_3)$, e.g. use of $M(SO_3^{2-}) = 80.1$ giving 58.3%
	Total	10	

Que	stion	er	Mark	Guidance
5 (a		 Temperature: (Forward) reaction is exothermic OR gives out heat OR reverse reaction is endothermic OR takes in heat ✓ Pressure: Right-hand side has fewer number of (gaseous) moles ✓ ORA Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right ✓ 	3	 ANNOTATE WITH TICKS AND CROSSES, etc ALLOW K_c increases at lower temperatures 3rd mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards NO₂ OR towards products OR in forward direction OR increases yield of NO₂/products ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' IGNORE responses in terms of rate
(b)	$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O \checkmark$ $2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2 \checkmark$	2	ALLOW multiples, e.g. $2NH_3 + 2\frac{1}{2}O_2 \longrightarrow 2NO + 3H_2O$ ALLOW \rightleftharpoons OR \rightarrow in equations
(C	;) (i)	$(K_{c} =) \frac{[NO_{2}]^{2}}{[NO]^{2} [O_{2}]} \checkmark$	1	Square brackets are essential

Question	er	Mark	Guidance
(c) (ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $45 \text{ dm}^3 \text{ mol}^{-1}$, award 5 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	Equilibrium moles 0.60 mol NO ₂ \checkmark 0.20 mol NO AND 0.40 mol O ₂ \checkmark		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout Alternative route if concs NO and O_2 calculated at start: initial concentrations: 0.40 mol dm ⁻³ NO AND 0.35 mol dm ⁻³ $O_2 \checkmark$
	Equilibrium concentrations (equilibrium moles ÷ 2) $[NO_2] = 0.30 \text{ mol } dm^{-3}$ AND $[NO] = 0.10 \text{ mol } dm^{-3}$ AND $[O_2] = 0.20 \text{ mol } dm^{-3} \checkmark$		Equilibrium concentrations: $[NO_2] = 0.30 \text{ mol } dm^{-3} \checkmark$ $[NO] = 0.10 \text{ mol } dm^{-3} \text{ AND } [O_2] = 0.20 \text{ mol } dm^{-3} \checkmark$
	Calculation of K_c and units $K_c = \frac{0.30^2}{0.10^2 \times 0.20} = 45 \checkmark \text{dm}^3 \text{ mol}^{-1} \checkmark$	5	 For units, ALLOW mol⁻¹ dm³ ALLOW ECF using any incorrect values for concentrations OR moles of NO, O₂ AND NO₂ For ECF, ALLOW 2 significant figures up to calculator value correctly rounded ALLOW ECF from incorrect K_c expression for both calculation and units
			Common ECFs worth less than 5 marks: 22.5 not $\div 2$ 3 marks + unit mark 1.61 0.6 for NO2 but 0.8 for NO and 0.7 for O2No mark for moles NO and O23 marks + unit mark 0.804 As above but also no $\div 2$ No mark for moles NO and O22 marks + unit mark 0.804 As above but also no $\div 2$ No mark for moles NO and O22 marks + unit mark
	Total	11	

Que	sti	on	Expected answers	Marks	Additional guidance	
6	а		FIRST, CHECK THE ANSWER ON ANSWER LINE IF numerical value = 7.81×10^{-2} OR 0.0781 AND [N O 1 = 0.2(00 mol dm ⁻³ AND [NO 1 = 1.6(0)		IF there is an alternative answer, check to see if there is any ECF credit possible using working below	
			award 4 calculation marks and check for the mark for correct units		ANNOTATIONS MUST BE USED	
			Equilibrium amount of N_2O_4 0.400 mol $N_2O_4 \checkmark$			
			Equilibrium concentrations [N ₂ O ₄] = 0.200 mol dm ⁻³ AND [NO ₂] = 1.60 mol dm ⁻³ \checkmark		ALLOW ECF for equilibrium amounts ÷ 2	
			$\mathcal{K}_{c} \text{ expression}$ $\mathcal{K}_{c} = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}} \text{ (Square brackets essential) } OR \frac{0.200}{1.60^{2}} \checkmark$			
			Calculation = $7.81 \times 10^{-2} \checkmark$		ALLOW 3 SF up to calculator value of 0.078125 correctly rounded ALLOW ECF using calculated equilibrium concentrations	
			Units dm ³ mol ^{−1} ✓	5	For units, ALLOW mol ^{-1} dm ³ ALLOW ECF from incorrect K_c expression	
			Common errors for 4 calculation marks – Remember there is another mark for unit	Iculation marks other mark for unit		
			7.81 x 10^{-2} from wrong concs $\sqrt[4]{} +$ units look for $[N_2O_4] = 0.8$ AND $[NO_2] = 3.2$ 0.03906 $\sqrt[4]{} \sqrt[4]{} +$ units no conversion of both moles to concentration			
			0.01953 $\checkmark \checkmark \checkmark + units$ no conversion of NO ₂ moles to concentration			
			12.8 $\sqrt{\sqrt{1+10}}$ moles of N ₂ O ₄ taken as 3.2/2			
			0.125 $\sqrt[4]{\sqrt{4}}$ + units; none $[NO_2]$ instead of $[NO_2]^2$ 'No units' MUST be stated			
			0.15625 MARK BY ECF as there are many different routes to this answer			

PhysicsAndMathsTutor.com

Question	Expected answers	Marks	Additional guidance
b	Each marking point is independent		
	Effect on K _c K_c does not change (with pressure) \checkmark		ALLOW K_c only changes with temperature IGNORE K_c changes with temperature
	Comparison of conc terms after increase in pressure $[NO_2]^2$ increases more than $[N_2O_4]$ OR concentration (term) on bottom (of K_c) increases more that concentration (term) on top (of K_c) \checkmark		ALLOW $\frac{[N_2O_4]}{[NO_2]^2} < K_c \text{ OR } \frac{[N_2O_4]}{[NO_2]^2}$ decreases IGNORE K_c decreases
	Changes in concentrations linked to K_c (amount /concentration of) N ₂ O ₄ increases AND (amount /concentration of) NO ₂ decreases AND to maintain/restore $K_c \checkmark$	3	ALLOW top of K_c expression increases and bottom decreases until K_c is reached ALLOW equilibrium shifts to right to maintain/restore K_c IGNORE just 'restores equilibrium' K_c IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
	Total	8	